import rhinoscriptsyntax as rs import random as ran allobjs = rs.AllObjects() rs.DeleteObjects(allobjs) rs.EnableRedraw(False) # dom-ino variables: A = 5.0 # A = Module size distance between columns B = A/3 # B= distance of columns to end of plate thick = 0.2 # thickness of all slabs hgt = 2.7 # height of room xcol = 2 # columns in x direction ycol = 3 # columns in y direction levels = 6 # number of floor plates f_height = 0.5 # foundation height f_size = 0.8 # foundation edge size distance = 0.4 level= 0.7 #height at which the elements of the domino are created # derived values: center_pt = [A*(xcol-1)/2, A*(ycol-1)/2, f_height] # insertion point of floor plate p_width = A*(xcol-1)+ 2*B # width of floor plate (x) p_length = A*(ycol-1)+ f_size # lenght of floor plate (y) # function to create box at centre def make_box(insertion=[0,0,0],xsize=10, ysize=10, zsize=10): corners = [[0,0,0], [xsize,0,0], [xsize,ysize,0], [0,ysize,0], [0,0,zsize], [xsize,0,zsize], [xsize,ysize,zsize], [0,ysize,zsize]] box = rs.AddBox(corners) rs.MoveObject(box, (-xsize/2, -ysize/2, 0)) rs.MoveObject(box, insertion) return(box) # function to create box at corner def make_podest(insertion=[0,0,0],xsize=10, ysize=10, zsize=10): corners = [[0,0,0], [xsize,0,0], [xsize,ysize,0], [0,ysize,0], [0,0,zsize], [xsize,0,zsize], [xsize,ysize,zsize], [0,ysize,zsize]] box = rs.AddBox(corners) rs.MoveObject(box, insertion) return(box) # function to create a field of foundations def make_foundations(A=A, f_size=f_size, f_height=f_height, xcol=xcol, ycol=ycol): fns=[] for i in range(xcol): for j in range(ycol): fns.append(make_box([i*A,j*A,0], f_size, f_size, f_height)) return(fns) # function to create a field of columns def make_columns(A=A, level=level, thick=thick, hgt=hgt, xcol=xcol, ycol=ycol): cls=[] for i in range(xcol): for j in range(ycol): cls.append(make_box([i*A,j*A,level], thick, thick, hgt)) return(cls) rs.EnableRedraw(False) #functions to make a the semi-circular terrace #function to create arc def make_arc(insertion, rad, thick, hgt, orientation): segs=[] segs.append(rs.AddArc([0,0,0], rad, 180)) segs.append(rs.AddArc([0,0,0], rad-thick, 180)) segs.append(rs.AddLine([rad,0,0], [rad-thick,0,0])) segs.append(rs.AddLine([-(rad-thick),0,0], [-rad,0,0])) crv=rs.JoinCurves(segs, delete_input=True) path=rs.AddLine([0,0,0], [0,0,hgt]) arc=rs.ExtrudeCurve(crv, path) rs.CapPlanarHoles(arc) rs.DeleteObject(crv) rs.DeleteObject(path) rs.RotateObject(arc,[0,0,0],orientation) rs.MoveObject(arc,insertion) return(arc) #function to create terracce def make_terrace(A=A, level=level, thick=thick, hgt=hgt, xcol=xcol, ycol=ycol): cls=[] for i in range(xcol-1): for j in range(ycol-1): ori = ran.randint(0,6) if ori < 4 : orientation = ori*90 cls.append(make_arc([i*A+A/2, j*A+A/2, level], A/3, thick, hgt, orientation)) return(cls) #new facade variation (the old one was really buggy and difficult to adjust to the right positions, so I decided to rescript it in a way that all of the corners are defined) def make_facade(A=A, B=B, thick=thick, hgt=hgt, levels=levels, xcol=xcol, ycol=ycol, f_height=f_height, f_size=f_size, distance=distance): # Define corner points of the facade, starting at the first plate level base_height = f_height + thick corners = { "c1": [-B, -distance, base_height], "c2": [-B, A * (ycol - 1) + f_size - distance, base_height], "c3": [A * (xcol - 1) + 2 * B - B, A * (ycol - 1) + f_size - distance, base_height], "c4": [A * (xcol - 1) + 2 * B - B, -distance, base_height] } # Define baselines for facade generation baselines = { "left": rs.AddLine(corners["c1"], corners["c2"]), "right": rs.AddLine(corners["c3"], corners["c4"]), "front": rs.AddLine(corners["c2"], corners["c3"]), "back": rs.AddLine(corners["c1"], corners["c4"]) } # Calculate height excluding the last floor facade_height = (levels - 1) * (hgt + thick) # Generate facade elements along each baseline fac_elem = [] for baseline in baselines.values(): divisions = rs.DivideCurve(baseline, 30) for point in divisions: box = make_box(point, 0.1, 0.1, facade_height) fac_elem.append(box) return fac_elem # function to create stairs def make_stair(start, th, tt, steps, thick, s_width): pointlist = [start] for i in range(steps): # step up`th` pointlist.append([pointlist[-1][0], pointlist[-1][1], pointlist[-1][2] + th]) # step forward `tt` pointlist.append([pointlist[-1][0] + tt, pointlist[-1][1], pointlist[-1][2]]) # closing the outline pointlist.append([pointlist[-1][0], pointlist[-1][1], pointlist[-1][2] - thick]) pointlist.append([pointlist[0][0], pointlist[0][1], pointlist[0][2] - thick]) pointlist.append([pointlist[0][0], pointlist[0][1], pointlist[0][2]]) # 2D outline of the staircase from the points s_outline = rs.AddPolyline(pointlist) # extrude the outline to create the stair volume path = rs.AddLine(start, [start[0], start[1] + s_width, start[2]]) hull = rs.ExtrudeCurve(s_outline, path) # cap the ends of the extrusion rs.CapPlanarHoles(hull) rs.DeleteObjects((s_outline, path)) return hull rs.EnableRedraw(False) # building dom-ino def make_domino(A=A, B=B, thick=thick, hgt=hgt, levels=levels, xcol=xcol, ycol=ycol, f_height=f_height, f_size=f_size): f_list=[] #list of foundations c_list=[] #list of columns p_list=[] #list of plates for i in range(levels): center_pt[2] = f_height + i*(thick+hgt) level = f_height + thick + (i-1)*(hgt+thick) if i==0: f_list=make_foundations(A, f_size, f_height, xcol, ycol) else: c_list.extend(make_columns(A, level, thick, hgt, xcol, ycol)) if(i%2): c_list.extend(make_terrace(A, level, thick, hgt, xcol, ycol)) p_list.append(make_box(center_pt, p_width, p_length, thick)) level=f_height + thick + (levels-1)*(hgt+thick) c_list.extend(make_terrace(A, level, thick, hgt, xcol, ycol)) #--------------------------------------------------------------------------------------------- # calculate stair values #--------------------------------------------------------------------------------------------- steps= int ((hgt+thick)/0.17) if steps%2: steps= steps-1 th= (hgt+thick)/steps if(th>0.19): steps = steps+2 th= (hgt+thick)/steps #--------------------------------------------------------------------------------------------- # stair parameters #--------------------------------------------------------------------------------------------- tt = 0.3 # step size s_width = 1.2 # stair width pod_w = B # depth of landing start = [pod_w, -(s_width*2 + f_size/2), f_height + thick] # start point of stair #loop to create staircase stairs_l = [] for i in range(levels): start[2] = f_height+thick + i*(thick+hgt) #z_coord if i==levels-1: #last podest stairs_l.append(make_podest([start[0]-pod_w, start[1]+s_width, start[2]-thick], pod_w, s_width, thick)) #special podest else: stairs_l.append(make_podest([start[0]-pod_w, start[1],start[2]-thick], pod_w, s_width*2, thick)) stairs_l.append(make_stair(start, th, tt, int(steps/2), thick, s_width)) stairs_l.append(make_podest([start[0]+(steps/2)*tt, start[1],start[2]+(steps/2)*th-thick], pod_w, s_width*2, thick)) stairs_l.append(make_stair([start[0]+(steps/2)*tt, start[1]+s_width, start[2]+(steps/2)*th], th, -tt, int(steps/2), thick, s_width)) fac_list = make_facade(levels=levels) return(f_list, c_list, p_list, stairs_l, fac_list) (f_list, c_list, p_list, stairs_l, fac_list) = make_domino() # layers rs.AddLayer("foundation") rs.LayerColor("foundation", (155, 48, 255)) rs.ObjectLayer(f_list, "foundation") rs.AddLayer("columns") rs.LayerColor("columns", (60, 220, 60)) rs.ObjectLayer(c_list, "columns") rs.AddLayer("plates") rs.LayerColor("plates", (60, 60, 220)) rs.ObjectLayer(p_list, "plates") rs.AddLayer("stairs") rs.LayerColor("stairs", (63, 191, 127)) rs.ObjectLayer(stairs_l, "stairs") rs.AddLayer("facade") rs.LayerColor("facade", (180, 0, 56)) rs.ObjectLayer(fac_list, "facade") # Define the spiral spiral_start_point = (10, 10, 0) curv = rs.AddSpiral(spiral_start_point, (spiral_start_point[0], spiral_start_point[1], 3), 0, 2, 100, 20) # Divide the spiral curve into points pts = rs.DivideCurve(curv, 25) # Loop through the points on the spiral for p in pts: lvlnum = ran.randint(2, 17) (f_list, c_list, p_list, stairs_l, fac_list) = make_domino(levels=lvlnum) rs.MoveObject(f_list + c_list + p_list + stairs_l + fac_list, p) param = rs.CurveClosestPoint(curv, p) normal = rs.CurveTangent(curv, param) angle = rs.Angle([0, 0, 0], normal)[0] rs.RotateObjects(f_list + c_list + p_list + stairs_l + fac_list, p, angle) rs.EnableRedraw(True)