import rhinoscriptsyntax as rs import random as ran import flipped_classroom_lib as fc reload(fc) rs.DeleteObjects(rs.AllObjects()) ############################################################### # Your Panel functions... ############################################################### def my_panel(points,scale): #rs.AddSrfPt(points) (P0,P1,P2,P3)= points rs.AddLine(P0,P2) d_cen1 = rs.VectorDivide(rs.VectorAdd(P0,P2),2) rs.AddPoint(d_cen1) rs.AddLine(P1,P3) d_cen2 = rs.VectorDivide(rs.VectorAdd(P1,P3),2) rs.AddPoint(d_cen2) center_pt = rs.VectorDivide(rs.VectorAdd(d_cen1,d_cen2),2) rs.AddPoint(center_pt) if not(rs.PointCompare (d_cen1,d_cen2)): rs.AddLine(d_cen1,d_cen2) vec1 = rs.VectorSubtract(P0,center_pt) vec2 = rs.VectorSubtract(center_pt,P3) normal = rs.VectorCrossProduct(vec1,vec2) u_normal= rs.VectorUnitize(normal) su_normal= rs.VectorScale(u_normal, scale) normal_pt= rs.VectorAdd(center_pt,su_normal) rs.AddPoint(normal_pt) rs.AddLine(center_pt, normal_pt) rs.AddSrfPt([P0,normal_pt,P1]) rs.AddSrfPt([P1,normal_pt,P2]) rs.AddSrfPt([P2,normal_pt,P3]) rs.AddSrfPt([P3,normal_pt,P0]) def my_panel_frame(points, scale, offset): (P0,P1,P2,P3) = points # name points in quad list pline = rs.AddPolyline([P0,P1,P2,P3,P0]) # make closed pline d_cen1 = rs.VectorDivide(rs.VectorAdd(P0,P2),2) # calculate center of first diagonal d_cen2 = rs.VectorDivide(rs.VectorAdd(P1,P3),2) # calculate center of second diagonal center_pt = rs.VectorDivide(rs.VectorAdd(d_cen1,d_cen2),2) # calculate center between diagonal center points #prepare vectors for cross product to get normal vec1 = rs.VectorSubtract(P0, center_pt) vec2 = rs.VectorSubtract(center_pt, P3) normal = rs.VectorCrossProduct(vec1, vec2) #calculate face normal at true center point u_normal = rs.VectorUnitize(normal) #unitize this normal vector (length 1) su_normal = rs.VectorScale(u_normal, scale) #scale unitized normal vector normal_pt = rs.VectorAdd(center_pt, su_normal) # find point at tip of normal vector rs.AddPoint(normal_pt) # put point normal_pt rs.AddLine(center_pt, normal_pt) # line to show centered normal vector #off_l = rs.OffsetCurve(pline, center_pt, offset, u_normal) off_l = rs.ScaleObject(pline, center_pt, [scale,scale,scale], copy=True) s_points = rs.CurvePoints(off_l) #create front of frame rs.AddSrfPt([P0, s_points[0],s_points[1], P1]) rs.AddSrfPt([P1, s_points[1],s_points[2], P2]) rs.AddSrfPt([P2, s_points[2],s_points[3], P3]) rs.AddSrfPt([P3, s_points[3],s_points[0], P0]) off_l_s = rs.CopyObject(off_l, su_normal) ss_points = rs.CurvePoints(off_l_s) rs.AddSrfPt([ss_points[0], s_points[0],s_points[1], ss_points[1]]) rs.AddSrfPt([ss_points[1], s_points[1],s_points[2], ss_points[2]]) rs.AddSrfPt([ss_points[2], s_points[2],s_points[3], ss_points[3]]) rs.AddSrfPt([ss_points[3], s_points[3],s_points[0], ss_points[0]]) def my_panel_grid(points, split): (P0,P1,P2,P3) = points L_L = rs.AddLine(P0,P3) R_L = rs.AddLine(P1,P2) v_lines = [L_L, R_L] edge_pts =[] for e in v_lines: rs.RebuildCurve(e, 1, split) edge_pts.extend(rs.CurvePoints(e)) grid_pts = [] for i in range(split): hline = rs.AddLine(edge_pts[i], edge_pts[i+split]) rs.RebuildCurve(hline, 1, split) grid_pts.extend(rs.CurvePoints(hline)) for i,p in enumerate(grid_pts): rs.AddPoint(p) #cmd = "-Dot {} {} _Enter ".format(i,p) #rs.Command(cmd, False) rs.EnableRedraw(False) quad = [[0,0,0], [10,0,0], [10,0,12], [0,0,12]] quad = [[0,0,0], [10,4,0], [10,4,12], [0,0,12]] quad = [[0,0,0], [10,0,0], [10,2,12], [0,2,12]] quad = [[0,0,0], [10,0,0], [8,2,12], [2,2,12]] quad = [[0,0,0], [10,2,0], [10,-2,12], [0,2,10]] result_list = fc.PEF_single_face(quad) #result_list = fc.PEF_face(7, 10, 8.0, 5.0, 30) #result_list = fc.PEF_face_w(7, 10, 8.0, 5.0, 30, 2.0) result_list = fc.PEF_pantheon() p_list = result_list[0] # Pointlist, contains single points e_list = result_list[1] # Horizontal Edgelist, contains lists with two points ve_list = result_list[2] # Vertical Edgelist, contains lists with two points f_list = result_list[3] # Facelist, contans lists with four points (quads) zcol = result_list[4] # number of levels of faces xcol = result_list[5] # number of faces in one level print "there are " + str(len(p_list)) + " points and " + str(len(f_list)) + " faces on " + str(zcol) + " levels, "+str(xcol)+" per level!" if 0: for i in range(zcol): for j in range(xcol): points = f_list[i*xcol+j] #scale = ran.uniform(0.5, 8.5) my_panel_grid(f_list[i*xcol+j],8) #0.9, 1.5) #rs.AddSrfPt(f_list[i*xcol+j]) ############################################################################# # DOTS to explain the lists ############################################################################# if 0: # put a dot on each point and create a Point for i,pt in enumerate(p_list): rs.AddPoint(pt) cmd = "-Dot {} {} _Enter ".format(i,pt) rs.Command(cmd, False) if 0: # put a dot on each horizontal edge and create a line for i,e in enumerate(e_list): rs.AddLine(e[0],e[1]) cmd = "-Dot {} {} _Enter ".format(i,e[0]) rs.Command(cmd, False) if 0: # put a dot on each vertical edge and create a line for i,ve in enumerate(ve_list): rs.AddLine(ve[0],ve[1]) cmd = "-Dot {} {} _Enter ".format(i,ve[0]) rs.Command(cmd, False) if 0: # put a dot on each face and create a surface for i, quad in enumerate(f_list): rs.AddSrfPt(quad) cmd = "-Dot {} {} _Enter ".format(i,quad[0]) rs.Command(cmd, False) ############################################################################# # Some experiments with the lists ############################################################################# if 0: for i, quad in enumerate(f_list): if i%2: rs.AddSrfPt(quad) if 0: for i in range(zcol): for j in range(xcol): if (i+j)%2: rs.AddSrfPt(f_list[i*xcol+j]) if 0: # last row in pantheon ceiling is flat for i in range(zcol): for j in range(xcol): if i != zcol-1: points = f_list[i*xcol+j] scale = ran.uniform(0.5,8.5) my_panel(f_list[i*xcol+j], scale) else: rs.AddSrfPt(f_list[i*xcol+j]) if 1: for i in range(zcol): for j in range(xcol): points = f_list[i*xcol+j] (P0,P1,P2,P3) = points cpoints=[P0,P1,P2,P3,P0] plinea = rs.AddCurve(cpoints,2) plineb = rs.AddCurve(cpoints,3) #loftsurf = rs.AddLoftSrf([plinea, plineb]) rs.Command("-_Loft selid {} selid {} _Enter _Enter _Enter".format(plinea, plineb), False) loftsurf = rs.FirstObject() rs.OffsetSurface(loftsurf, .2, both_sides=True, create_solid=True) if 1: for line in e_list: mline = rs.AddLine(line[0], line[1]) rs.AddPipe(mline, 0, 0.3, cap=2) for line in ve_list: mline = rs.AddLine(line[0], line[1]) rs.AddPipe(mline, 0, 0.2, cap=2) rs.EnableRedraw(True)