import rhinoscriptsyntax as rs import random as ran import flipped_classroom_lib as fc reload(fc) rs.DeleteObjects(rs.AllObjects()) ############################################################### # Your Panel functions... ############################################################### """ def my_panel(points, scale): rs.AddSrfPt(points) # default face (P0,P1,P2,P3) = points # name points in quad list rs.AddLine(P0,P2) # make first diagonal line d_cen1 = rs.VectorDivide(rs.VectorAdd(P0,P2),2) # calculate center of first diagonal rs.AddPoint(d_cen1) # put point at first diagonal center rs.AddLine(P1,P3) # create second diagonal line d_cen2 = rs.VectorDivide(rs.VectorAdd(P1,P3),2) # calculate center of second diagonal rs.AddPoint(d_cen2) # put point at second diagonal center center_pt = rs.VectorDivide(rs.VectorAdd(d_cen1,d_cen2),2) # calculate center between diagonal center points rs.AddPoint(center_pt) # put point at true center point if not(rs.PointCompare(d_cen1,d_cen2)): # make sure the two center points are not identical rs.AddLine(d_cen1,d_cen2) # draw line between diagonal center points #prepare vectors for cross product to get normal vec1 = rs.VectorSubtract(P0, center_pt) vec2 = rs.VectorSubtract(center_pt, P3) normal = rs.VectorCrossProduct(vec1, vec2) #calculate face normal at true center point u_normal = rs.VectorUnitize(normal) #unitize this normal vector (length 1) su_normal = rs.VectorScale(u_normal, scale) #scale unitized normal vector normal_pt = rs.VectorAdd(center_pt, su_normal) # find point at tip of normal vector #rs.AddPoint(normal_pt) # put point normal_pt rs.AddLine(center_pt, normal_pt) # line to show centered normal vector #create pyramid rs.AddSrfPt([P0, normal_pt, P1]) rs.AddSrfPt([P1, normal_pt, P2]) rs.AddSrfPt([P2, normal_pt, P3]) rs.AddSrfPt([P3, normal_pt, P0]) """ def my_panel_frame(points, scale, offset): (P0, P1, P2, P3) = points # name points in quad list pline = rs.AddPolyline([P0, P1, P2, P3, P0]) # make closed pline d_cen1 = rs.VectorDivide(rs.VectorAdd(P0, P2), 2) # calculate center of first diagonal d_cen2 = rs.VectorDivide(rs.VectorAdd(P1, P3), 2) # calculate center of second diagonal center_pt = rs.VectorDivide(rs.VectorAdd(d_cen1, d_cen2), 2) # calculate center between diagonal center points # Prepare vectors for cross product to get normal vec1 = rs.VectorSubtract(P0, center_pt) vec2 = rs.VectorSubtract(center_pt, P3) normal = rs.VectorCrossProduct(vec1, vec2) # calculate face normal at true center point u_normal = rs.VectorUnitize(normal) # unitize this normal vector (length 1) su_normal = rs.VectorScale(u_normal, scale) # scale unitized normal vector normal_pt = rs.VectorAdd(center_pt, su_normal) # find point at tip of normal vector # Add visual aids for debugging rs.AddPoint(normal_pt) # put point normal_pt rs.AddLine(center_pt, normal_pt) # line to show centered normal vector # Offset and scale the polyline frame_scale = 1.2 # Adjust frame width by scaling off_l = rs.ScaleObject(pline, center_pt, [scale, scale, scale], copy=True) s_points = rs.CurvePoints(off_l) # Create the front of the frame rs.AddSrfPt([P0, s_points[0], s_points[1], P1]) rs.AddSrfPt([P1, s_points[1], s_points[2], P2]) rs.AddSrfPt([P2, s_points[2], s_points[3], P3]) rs.AddSrfPt([P3, s_points[3], s_points[0], P0]) # Create the offset inner front frame inner_offset = rs.ScaleObject(off_l, center_pt, [scale, scale, scale], copy=True) inner_points = rs.CurvePoints(inner_offset) inner_offset_shifted = rs.CopyObject(inner_offset, rs.VectorScale(u_normal, -0.8)) # Adjust inner frame depth shifted_points = rs.CurvePoints(inner_offset_shifted) for i in range(4): rs.AddSrfPt([inner_points[i], shifted_points[i], shifted_points[(i + 1) % 4], inner_points[(i + 1) % 4]]) # Create the sides of the frame with fixed offset (overhang) overhang = 0.8 # Desired overhang value adjusted_su_normal = rs.VectorScale(u_normal, overhang) # Adjusted vector for overhang # Offset the points outward in both directions from the frame outward_off_l_s = rs.CopyObject(off_l, adjusted_su_normal) inward_off_l_s = rs.CopyObject(off_l, rs.VectorScale(u_normal, -overhang)) outward_points = rs.CurvePoints(outward_off_l_s) inward_points = rs.CurvePoints(inward_off_l_s) # Create the side surfaces with adjusted overhang for i in range(4): rs.AddSrfPt([outward_points[i], s_points[i], s_points[(i + 1) % 4], outward_points[(i + 1) % 4]]) rs.AddSrfPt([inward_points[i], s_points[i], s_points[(i + 1) % 4], inward_points[(i + 1) % 4]]) # Create cover between sides of frame and inner front frame for i in range(4): rs.AddSrfPt([shifted_points[i], inward_points[i], inward_points[(i + 1) % 4], shifted_points[(i + 1) % 4]]) """ def my_panel_grid(points, split): (P0,P1,P2,P3) = points # name points in quad list L_L = rs.AddLine(P0,P3) R_L = rs.AddLine(P1,P2) v_lines = [L_L, R_L] edge_pts =[] for e in v_lines: rs.RebuildCurve(e, 1, split) edge_pts.extend(rs.CurvePoints(e)) grid_pts = [] for i in range(split): hline = rs.AddLine(edge_pts[i], edge_pts[i+split]) rs.RebuildCurve(hline, 1, split) grid_pts.extend(rs.CurvePoints(hline)) for i,p in enumerate(grid_pts): rs.AddPoint(p) #cmd = "-Dot {} {} _Enter ".format(i,p) #rs.Command(cmd, False) """ ############################################################### rs.EnableRedraw(False) quad = [[0,0,0], [10,0,0], [10,0,12], [0,0,12]] #quad = [[0,0,0], [10,4,0], [10,4,12], [0,0,12]] #quad = [[0,0,0], [10,0,0], [10,2,12], [0,2,12]] #quad = [[0,0,0], [10,0,0], [8,2,12], [2,2,12]] #quad = [[0,0,0], [10,2,0], [10,-2,12], [0,2,10]] #result_list = fc.PEF_single_face(quad) #result_list = fc.PEF_face(7, 10, 8.0, 5.0, 30) #result_list = fc.PEF_face_w(7, 10, 8.0, 5.0, 30, 2.0) result_list = fc.PEF_pantheon() p_list = result_list[0] # Pointlist, contains single points e_list = result_list[1] # Horizontal Edgelist, contains lists with two points ve_list = result_list[2] # Vertical Edgelist, contains lists with two points f_list = result_list[3] # Facelist, contans lists with four points (quads) zcol = result_list[4] # number of levels of faces xcol = result_list[5] # number of faces in one level print "there are " + str(len(p_list)) + " points and " + str(len(f_list)) + " faces on " + str(zcol) + " levels, "+str(xcol)+" per level!" if 0: for i in range(zcol): for j in range(xcol): points = f_list[i*xcol+j] scale = 0.8 my_panel_frame(points, scale, 0.1) #rs.AddSrfPt(f_list[i*xcol+j]) ############################################################################# # DOTS to explain the lists ############################################################################# if 0: # put a dot on each point and create a Point for i,pt in enumerate(p_list): rs.AddPoint(pt) cmd = "-Dot {} {} _Enter ".format(i,pt) rs.Command(cmd, False) if 0: # put a dot on each horizontal edge and create a line for i,e in enumerate(e_list): rs.AddLine(e[0],e[1]) cmd = "-Dot {} {} _Enter ".format(i,e[0]) rs.Command(cmd, False) if 0: # put a dot on each vertical edge and create a line for i,ve in enumerate(ve_list): rs.AddLine(ve[0],ve[1]) cmd = "-Dot {} {} _Enter ".format(i,ve[0]) rs.Command(cmd, False) if 0: # put a dot on each face and create a surface for i, quad in enumerate(f_list): rs.AddSrfPt(quad) cmd = "-Dot {} {} _Enter ".format(i,quad[0]) rs.Command(cmd, False) ############################################################################# # Some experiments with the lists ############################################################################# if 0: for i, quad in enumerate(f_list): if i%2: rs.AddSrfPt(quad) if 0: for i in range(zcol): for j in range(xcol): if (i+j)%2: rs.AddSrfPt(f_list[i*xcol+j]) if 1: # last row in pantheon ceiling is flat for i in range(zcol): for j in range(xcol): if i != zcol-1: points = f_list[i*xcol+j] scale = 0.05 my_panel_frame(f_list[i*xcol+j], 0.5, 0.001) else: rs.AddSrfPt(f_list[i*xcol+j]) if 0: for i in range(zcol): for j in range(xcol): points = f_list[i*xcol+j] (P0,P1,P2,P3) = points cpoints=[P0,P1,P2,P3,P0] plinea = rs.AddCurve(cpoints,2) plineb = rs.AddCurve(cpoints,3) #loftsurf = rs.AddLoftSrf([plinea, plineb]) rs.Command("-_Loft selid {} selid {} _Enter _Enter _Enter".format(plinea, plineb), False) loftsurf = rs.FirstObject() rs.OffsetSurface(loftsurf, .2, both_sides=True, create_solid=True) if 0: for line in e_list: mline = rs.AddLine(line[0], line[1]) rs.AddPipe(mline, 0, 0.3, cap=2) for line in ve_list: mline = rs.AddLine(line[0], line[1]) rs.AddPipe(mline, 0, 0.2, cap=2) rs.EnableRedraw(True)