import rhinoscriptsyntax as rs import scriptcontext as sc import random as ran allobjs = rs.AllObjects() rs.DeleteObjects(allobjs) A = 5 # Module size (distance between columns) B = A/3 # Distance of columns to end of plate thick = 0.2 # thickness of all slabs hgt = 2.7 # height of room xcol = 3 # columns in x direction ycol = 6 # columns in y direction levels = 9 # number of floor plates f_height = 0.5 # foundation height f_size = 0.8 # foundation edge size center_pt = [A*(xcol-1)/2, A*(ycol-1)/2, f_height] p_width = A*(xcol-1)+2*B # width of floor plate p_length = A*(ycol-1) + f_size # length of floor plate # create a box #corners = [[0,0,0], [xsize,0,0], [xsize,ysize,0], [0,ysize,0], # [0,0,zsize], [xsize,0,zsize], [xsize,ysize,zsize], [0,ysize,zsize]] #rs.AddBox(corners) rs.EnableRedraw(enable=False) # create a box at Centerpoint def make_box(insertion=[0,0,0],xsize=10,ysize=10,zsize=10): corners = [[0,0,0], [xsize,0,0], [xsize,ysize,0], [0,ysize,0], [0,0,zsize], [xsize,0,zsize], [xsize,ysize,zsize], [0,ysize,zsize]] box = rs.AddBox(corners) rs.MoveObject(box, (-xsize/2,-ysize/2,0)) rs.MoveObject(box, insertion) return(box) # create a box at cornerpoint def make_podest(insertion=[0,0,0],xsize=10,ysize=10,zsize=10): corners = [[0,0,0], [xsize,0,0], [xsize,ysize,0], [0,ysize,0], [0,0,zsize], [xsize,0,zsize], [xsize,ysize,zsize], [0,ysize,zsize]] box = rs.AddBox(corners) rs.MoveObject(box, insertion) return(box) # make_box([10,-3,0]) # Foundations def make_foundations(A=5.0, f_size=0.8, f_height=0.5, xcol=2, ycol=3): fns = [] for i in range(xcol): for j in range(ycol): fns.append(make_box([i*A,j*A,0], f_size,f_size,f_height)) return(fns) # Columns def make_columns(A=5.0,level=0.7, thick=0.2, hgt=3.0, xcol=2, ycol=3): cls=[] for i in range(xcol): for j in range(ycol): cls.append(make_box([i*A,j*A,level], thick, thick, hgt)) return(cls) def make_arc(insertion, rad, thick, hgt, orientation): segs = [] segs.append(rs.AddArc([0,0,0], rad, 180)) segs.append(rs.AddArc([0,0,0], rad+thick, 180)) segs.append(rs.AddLine([rad,0,0], [rad+thick,0,0])) segs.append(rs.AddLine([-rad,0,0], [-(rad+thick),0,0])) crv = rs.JoinCurves(segs, delete_input=True) path = rs.AddLine([0,0,0], [0,0,hgt]) arc = rs.ExtrudeCurve(crv, path) rs.CapPlanarHoles(arc) rs.DeleteObject(crv) rs.DeleteObject(path) rs.RotateObject(arc, [0,0,0], orientation) rs.MoveObject(arc, insertion) return(arc) def make_terrace(A=5.0,level=0.7, thick=0.2, hgt=3.0, xcol=2, ycol=3): cls=[] for i in range(xcol-1): for j in range(ycol-1): ori = ran.randint(0,6) if ori<4: orientation = ori*90 cls.append(make_arc([i*A+A/2,j*A+A/2,level], A/2, thick, hgt, orientation)) return(cls) def make_stair(start, th, tt, steps, thick, s_width): pointlist=[start] for i in range(steps): pointlist.append([pointlist[-1][0],pointlist[-1][1],pointlist[-1][2]+th]) pointlist.append([pointlist[-1][0]+tt,pointlist[-1][1],pointlist[-1][2]]) pointlist.append([pointlist[-1][0], pointlist[-1][1], pointlist[-1][2]-thick]) pointlist.append([pointlist[0][0], pointlist[0][1], pointlist[0][2]-thick]) pointlist.append([pointlist[0][0], pointlist[0][1], pointlist[0][2]]) s_outline = rs.AddPolyline(pointlist) path = rs.AddLine(start, [start[0], start[1]+s_width, start[2]]) hull = rs.ExtrudeCurve(s_outline, path) rs.CapPlanarHoles(hull) rs.DeleteObjects((s_outline,path)) return(hull) total_length = 10.78 # Total length of the building width_length = 5.4 # Total width of the building xf = 0.2 # Width of each facade box yf = 0.05 # Height of each facade box f_pcs = 45 # Number of facade boxes along the length (can be adjusted) f_pcs_width = 20 # Number of facade boxes along the width (can be adjusted) # Gap for the windows along the length facade (on the right facade) gap_start = int(f_pcs / 3) gap_end = gap_start + 10 # Customize the number of gaps for windows # Facade parameters - adjust the offsets based on the building size def calculate_offsets(xcol, A, B): off_length_right = A * (xcol - 1) + B + xf / 2 off_length_left = A * (xcol - 2.7) + B + xf / 2 off_breadth = A * (xcol - 1) + B + xf / 2 off_breadth_left = A * (xcol - 2.7) + B + xf / 2 return off_length_right, off_length_left, off_breadth, off_breadth_left # Calculate offsets off_length_right, off_length_left, off_breadth, off_breadth_left = calculate_offsets(xcol, A, B) # Displacement between the facade boxes along the length and width dis_length = total_length / f_pcs # Adjust the distance between boxes along the length dis_width = width_length / f_pcs_width # Adjust the distance between boxes along the width # Function to create the facade on the length side def make_facade_length(xf, yf, zf, dis_length, off, gap_start, gap_end): fcd = [] for i in range(f_pcs): if gap_start <= i < gap_end: # Skip the gap for windows continue fcd.append(make_box([off, i * dis_length - f_size / 2, f_height], xf, yf, zf)) # Create facade boxes return fcd # Function to create the facade on the breadth side def make_facade_breadth(xf, yf, zf, dis_width, off): fcd = [] for i in range(f_pcs_width): fcd.append(make_box([i * dis_width - f_size / 2, off, f_height], xf, yf, zf)) # Create facade boxes return fcd # Create facade on the right length side make_facade_length(xf, yf, (hgt + thick)*(levels - 1), dis_length, off_length_right, gap_start, gap_end) # Create facade on the left length side make_facade_length(xf, yf, (hgt + thick)*(levels - 1), dis_length, off_length_left, gap_start, gap_end) # Create facade on the right breadth side make_facade_breadth(xf, yf, (hgt + thick)*(levels - 1), dis_width, off_breadth) # Create facade on the left breadth side make_facade_breadth(xf, yf, (hgt + thick)*(levels - 1), dis_width, off_breadth_left) # Builing Dom-ino def make_domino(A=A, B=B, thick=thick, hgt=hgt, levels=levels, xcol=xcol, ycol=ycol, f_height=f_height, f_size=f_size): f_list = [] c_list = [] p_list = [] for i in range(levels): center_pt[2] = f_height + i*(thick+hgt) level = f_height + thick + (i-1)*(hgt+thick) if i==0: f_list = make_foundations(A, f_size, f_height, xcol, ycol) else: c_list.extend(make_columns(A, level, thick, hgt, xcol, ycol)) c_list.extend(make_terrace(A, level, thick, hgt, xcol, ycol)) p_list.append(make_box(center_pt, p_width, p_length, thick)) level = f_height + thick + (levels-1)*(hgt+thick) c_list.extend(make_terrace(A, level, thick, hgt, xcol, ycol)) c_list.extend(make_facade_length(xf=xf, yf=yf, zf=(hgt + thick)*(levels - 1), dis_length=dis_length, off=off_length_right, gap_start=gap_start, gap_end=gap_end)) c_list.extend(make_facade_length(xf=xf, yf=yf, zf=(hgt + thick)*(levels - 1), dis_length=dis_length, off=off_length_left, gap_start=gap_start, gap_end=gap_end)) c_list.extend(make_facade_breadth(xf=xf, yf=yf, zf=(hgt + thick)*(levels - 1), dis_width=dis_width, off=off_breadth)) c_list.extend(make_facade_breadth(xf=xf, yf=yf, zf=(hgt + thick)*(levels - 1), dis_width=dis_width, off=off_breadth_left)) #stair calculator: steps = int((hgt+thick)/0.17) if steps%2: steps = steps-1 th = (hgt+thick)/steps if (th>0.19): steps = steps+2 th = (hgt+thick)/steps # Parameter Stiegen: tt = 0.3 # step size s_width = 1.2 # stair width pod_width = B # depth of landing start= [pod_width,-(s_width*2+f_size/2), f_height+thick] #startpoint of stair #loop to create staircase stair_l = [] for i in range(levels): start [2] = f_height+thick + i*(thick+hgt) #z-wert (immer neu) if i ==levels-1: #letztes Podest stair_l.append(make_podest([start[0]-pod_width, start[1]+s_width, start[2]-thick], pod_width, s_width, thick)) #Sonderpodest else: stair_l.append(make_podest([start[0]-pod_width, start[1], start[2]-thick], pod_width, s_width*2, thick)) stair_l.append(make_stair(start, th, tt, int(steps/2), thick, s_width)) stair_l.append(make_podest([start[0]+(steps/2)*tt, start[1], start[2]+(steps/2)*th-thick], pod_width, s_width*2, thick)) stair_l.append(make_stair([start[0]+(steps/2)*tt, start[1]+s_width, start[2]+(steps/2)*th], th, -tt, int(steps/2), thick, s_width)) return(f_list, c_list, p_list, stair_l) #plane = rs.WorldXYPlane() my_c = rs.AddSpiral([0,0,0],[0,0,1],0,1.5,100,1) pts = rs.DivideCurve(my_c, 25) #for i in range(6): #xran = ran.randint(-100,100) #yran = ran.randint(-100,100) #rot = ran.randint(0,360) #levels = ran.randint(2,7) #(f_list, c_list, p_list, stair_l) = make_domino(levels=levels) #rs.MoveObject(f_list + c_list + p_list + stair_l, [xran, yran,0]) #rs.RotateObjects(f_list + c_list + p_list + stair_l, [xran, yran,0],rot) for i in pts: #rot = ran.randint(0,360) levels = ran.randint(2,6) (f_list, c_list, p_list, stair_l) = make_domino(levels=levels) rs.MoveObjects(f_list + c_list + p_list + stair_l, i) param = rs.CurveClosestPoint(my_c,i) normal = rs.CurveTangent(my_c, param) angle = rs.Angle([0,0,0], normal) [0] rs.RotateObjects(f_list + c_list + p_list + stair_l, i,angle) rs.EnableRedraw(True) rs.AddLayer("Foundation") rs.LayerColor("Foundation", (220,60,60)) rs.ObjectLayer(f_list, "Foundation") rs.AddLayer("Column") rs.LayerColor("Column", (60,220,60)) rs.ObjectLayer(c_list, "Column") rs.AddLayer("Plates") rs.LayerColor("Plates", (60,60,220)) rs.ObjectLayer(p_list, "Plates")