The person

Urania is the Muse of Astronomy in
Greek mythology, her name derived
from Uranos, the personification of the
sky. She is often depicted with symbols
such as a celestial globe and a pointer,
which she typically holds in her hands,
sometimes gesturing with the pointer
towards a globe on the ground.

In Late Antiquity, the Pythagorean
concept of the harmony of the spheres
was elaborated upon, with each Muse
assigned to a specific celestial sphere.
In this framework, Urania was
associated with the fixed stars,
representing the highest tone in the
harmony of the spheres.

Stanz Anna, 12323147

Final Project DM2

Homage to Urania - Meteorites over Vienna

The project

As the foundation for my project, I used the "Urania"
Observatory in Vienna. Named after Urania, the Muse of
Astronomy and the stars, the observatory is one of the oldest
public observatories in Austria and embodies the spirit of
exploration and the quest for knowledge about the cosmos.

In my project, | envisioned meteorites descending upon the
observatory, each following different celestial paths. As they
shower down upon the building, they create a stunning
spectacle, illuminating the sky and cover the building in the
process.

This project pays homage to Urania, not only as a symbol of
celestial navigation and discovery but also as a representation
of humanity's enduring fascination with the stars. The meteoric
paths are a reminder of the dynamic nature of the universe,
where cosmic events continuously unfold, shaping our
understanding of space and time.

The code

allBahnCoords = []

anzMet = random.randint (20, 40)
anzFrames = 100

captureIt = 0

deltaz = dz = 5/anzMet
divy = 20
divx = 15
min distance = 5
max_distance = 25

def MakeMeteo (metPt, mSize=25):
meteoritCoords = []
for i in range(80):
vecX = dm.randVec (-mSize, mSize)
corX = rs.VectorAdd(metPt, vecX)
meteoritCoords.append (corX)
meteorit = rs.AddCurve (meteoritCoords, 2)
rs.ObjectColor (meteorit, [102,102,102])
rs.ObjectName (meteorit, "meteo meteorit "+str(m))

###Meteo flachdruecken
pos = rs.CurveStartPoint (meteorit)
if pos[2] <= 20.5:
stauchung = random.uniform(0.1,0.5)
rs.ScaleObject (meteorit,metPt, [1.5, 1.5, stauchungl)
###Tangente auf Bahn
for bahn in rs.ObjectsByName ("bahn_ *"):
#print bahn
param = rs.CurveClosestPoint (bahn, metPt)
ptBahn = rs.EvaluateCurve (bahn, param)
dist = rs.Distance(metPt, ptBahn)
#print dist
if dist < 0.00001:
tan = rs.CurveTangent (bahn, param)
schweif = rs.AddLine(metPt, rs.VectorAdd(metPt, rs.VectorScale (tan,
-random.uniform(200,500))))
###Koma
coordsKoma = rs.DivideCurve (schweif, divy, 0)
#rs.DeleteObject (schweif)
SchweifPt = rs.AddPoints (coordsKoma)
rs.ObjectName (SchweifPt, "schweif "+str(m))
rs.ObjectColor (SchweifPt, [200,200,0])
for i in range(len(coordsKoma)) :
auskrag = dm.reMap(i, 0, len(coordsKoma)-1, max distance, min distance)
KomaVec = rs.VectorAdd(coordsKomal[i], [0,0, random. unlform(auskrag, auskrag)])
Koma = rs.AddPoint (KomaVec)
rs.ObjectName (Koma, "koma "+str (m))
rs.ObjectColor (Koma, [200,200,0])
###zusaetzliche Punkte um Koma auszufuellen
coordsKomaZusatz = rs.DivideCurve (schweif, divX, 0)
rs.DeleteObject (schweif)
for i in range(len(coordsKomaZusatz)) :
auskragAdd = dm.reMap (i, 0, len(coordsKomaZusatz)- max distance, min distance)
KomaVecAdd = rs.VectorAdd (coordsKomazusatz[i], [0, random. unlform(auskrag, auskrag)]
KomaAdd = rs.AddPoint (KomaVecAdd)
rs.ObjectName (KomaAdd, "koma add "+str(m))
rs.ObjectColor (KomaAdd, [200,200,0])
#break

for i in range(anzMet):

tar = random.choice (targets)

tar[2]= i*dZ

#rs.AddPoint (tar)

pOben = rs.VectorAdd(tar, [0,0, random.uniform(200,500)])

pStart= rs.VectorAdd (pOben,
[random.uniform(-100,2000), random.uniform(-100,2000), random.uniform(100,500)])

kometBahnCoords = [pStart, pOben, tar]

bahn = rs.AddCurve (kometBahnCoords, 2) ###Flugbahn

rs.HideObject (bahn)

rs.ObjectColor (bahn, [220,220,100])

rs.ObjectName (bahn, "bahn "+str(i))

anzBahn = int (rs.CurvelLength (bahn) *random.uniform(0.01, 0.05)) ### abstand der points =>
(randomisierte) speed

#print "anzBahn", anzBahn

coords = rs.DivideCurve(bahn, anzBahn, 0)

for x in range(random.randint (1, 3)): ## sooft startet neuer komet auf gleicher bahn == maximale
dauer meteoritenRegen .. nicht mehr als 8 einstellen :)

dm.esc ()
coords.extend (coords)
allBahnCoords.append(coords)
#rs.DeleteObject (bahn)

for j in range(anzFrames) :
#zoom+=deltaZoom
#camVec = rs.VectorRotate (camVec, deltaAngle, [0,0,1])
#cam = rs.VectorAdd(tar, camVec)
#dm.setCameraTarget (cam, tar, lens= zoom, rota= upVec =
[0.02312681190534399,0. 04104226012737455 0. 9988897253724917])
rs.Redraw ()
dm.esc ()
#rs.DeleteObjects (rs. ObjectsByName("meteo *"))
rs.DeleteObjects (rs.ObjectsByName ("schweif *"))
rs.DeleteObjects (rs. ObjectsByName(koma_*"))

meteos = rs.ObjectsByName ("meteo_ *")
for met in meteos:
pos = rs.CurveStartPoint (met) ###rs.PointCoordinates(met)

if pos[2] > 20.5: ### unterhalb bleibens liegen
rs.DeleteObject (met)

for m in range (anzMet) :
dm.esc ()
if j < len(allBahnCoords[m]):
metPt = rs.AddPoint (allBahnCoords[m] [J])
MakeMeteo (metPt)
rs.DeleteObject (metPt)
#rs.ObjectName (rs.AllObjects () [0], "meteo_ "+str (m))

Gruppe o1 Gruber - WS24/25

