############################ HU_11 ############################ import rhinoscriptsyntax as rs import sys, time, csv, ast import random as rd sys.path.append("P:\\WWW\\mraontu\\dm2") import DM_lib as dm #reload(dm) rs.UnitSystem(4)# km = 5, meters = 4, cm = 3 etc rs.ShowGrid(None, 0) rs.ShowGridAxes(None, 0) rs.ViewDisplayMode(rs.CurrentView(), "Rendered") rs.DeleteObjects(rs.AllObjects()) rs.EnableRedraw(False) ############################ #dm.PointRadius(displayModeX=0, rad=1, styl=1) ### import csv datei ### def import_closed_curves(file_path="P:\\WWW\\mraontu\\dm2\\09\\Lists\\kontur_curves.csv", layer_name="Imported_Kontur_Curves"): if not rs.IsLayer(layer_name): rs.AddLayer(layer_name, [0, 0, 0]) with open(file_path, "r") as f: reader = csv.reader(f) for row in reader: points = [ast.literal_eval(pt) for pt in row] # String-Koordinaten in Listen umwandeln crv = rs.AddCurve(points, degree=1) # Kurve mit Grad 3 erstellen (anpassbar) if crv: rs.CloseCurve(crv) # Sicherstellen, dass die Kurve geschlossen ist rs.ObjectLayer(crv, layer_name) print("fin import ") import_closed_curves("P:\\WWW\\mraontu\\dm2\\09\\Lists\\kontur_curves.csv", "Imported_Kontur_Curves") # CSV Datei import P:\WWW\mraontu\dm2\09\Lists ### MAIN CRV - volumen and path crv ### curves = rs.ObjectsByLayer("Imported_Kontur_Curves") ref_punkt = [-6517.71, 69205.71, 0] # punkt wurde innerhalb der gesuchten crv gesetzt main_curve_layer = "main_curve" if curves: main_crv = min(curves, key=lambda crv: rs.Distance(ref_punkt, rs.CurveAreaCentroid(crv)[0])) if not rs.IsLayer(main_curve_layer): rs.AddLayer(main_curve_layer, [255, 0, 0]) # layer main_curve rs.ObjectLayer(main_crv, main_curve_layer) ### Volumen 3D - simple building ### 3d extra minimal gehalten # Parameter h_volumen = 3.0 # Ebenen Hoehe anz_geschosse = 10 building_layer = "building" scale_range = (0, 0.8) # scale range EG ,... special_scale = 1.1 # scale Geschoss 2 und 10 if not rs.IsLayer(building_layer): rs.AddLayer(building_layer, [0, 0, 0]) # layer building for i in range(anz_geschosse): z_offset = i * h_volumen scale_factor = special_scale if i in [1, 9] else scale_range[1] # 1 = Geschoss 2, 9 = Geschoss 10 center = rs.CurveAreaCentroid(main_crv)[0] # kopie main crv scale scaled_crv = rs.ScaleObject(main_crv, center, [scale_factor, scale_factor, 1], copy=True) rs.MoveObject(scaled_crv, [0, 0, z_offset]) # crv Z verschieben volume = rs.ExtrudeCurveStraight(scaled_crv, [0, 0, z_offset], [0, 0, z_offset + h_volumen]) # extrudieren rs.CapPlanarHoles(volume) rs.ObjectLayer(volume, building_layer) ### PATH CRV - helix startpts ### def create_path_curves(path_crv, Eckpunkte, path_layer="path_curves", z_offset=5, divisions=6): if not rs.IsLayer(path_layer): rs.AddLayer(path_layer, [255, 0, 0]) all_points = rs.CurvePoints(path_crv) base_points = [all_points[i] for i in Eckpunkte if i < len(all_points)] # Eckpunkte created_curves = [] divided_points = [] for i in range(len(base_points) - 1): p1_offset = [base_points[i][0], base_points[i][1], base_points[i][2] + z_offset] p2_offset = [base_points[i + 1][0], base_points[i + 1][1], base_points[i + 1][2] + z_offset] curve = rs.AddCurve([p1_offset, p2_offset]) if curve: rs.ObjectLayer(curve, path_layer) created_curves.append(curve) if divisions > 0: div_pts = rs.DivideCurve(curve, divisions, create_points=True) divided_points.extend(div_pts) return created_curves, divided_points # output path_crv + div pts = helix startpts # Parameter Eckpunkte = [ 2, 3, 4, 5] # Welche Eckpunkte genutzt werden sollen path_layer = "path_curve" path_z_offset = 6 # z verschiebung path helix anz_startpoints = 6 # set parameter path crv (anz startpts) curves, helix_startpoints = create_path_curves(path_crv=main_crv,Eckpunkte=Eckpunkte,path_layer=path_layer, z_offset=path_z_offset,divisions=anz_startpoints) # erstellen von path crv fuer helix ########################### DNA - Doppelhelix ################################## # Layers A_color=[255, 37, 65] # set colors for Helix B_color=[56, 90, 255] C_color=[100, 0, 100] dm.newEmptyLayer("Helix_A", color=A_color) dm.newEmptyLayer("Helix_B", color=B_color) dm.newEmptyLayer("Helix_Connections", color=C_color) rs.LayerVisible("main_curve",False) rs.LayerVisible("path_curve",False) # Rotation um center pt def rotate_point_around_origin(point, center, angle): vector = rs.VectorSubtract(point, center) rotated_vector = rs.VectorRotate(vector, angle, [0, 0, 1]) return rs.VectorAdd(rotated_vector, center) # Doppelhelix mit Rotation um center pt def generate_doppel_helix(base_pt, spiral_size=28, z_scale_factor=1, anz_spiral=40, num_turns=4, radius=4, rotation_angle=0, A_color=A_color, B_color=B_color, C_color=C_color): vecX, vecY = [radius, 0, 0], [-radius, 0, 0] spiral_points_1, spiral_points_2 = [], [] for i in range(anz_spiral): angle = (360 / anz_spiral) * num_turns * i z_shift = (i / float(anz_spiral)) * spiral_size * z_scale_factor rotated_vecX = rs.VectorRotate(vecX[:], angle, [0, 0, 1]) rotated_vecX[2] = z_shift final_point_X = rotate_point_around_origin(rs.VectorAdd(base_pt, rotated_vecX), base_pt, rotation_angle) spiral_points_1.append(final_point_X) point_A = rs.AddPoint(final_point_X) rs.ObjectLayer(point_A, "Helix_A") rs.ObjectColor(point_A, A_color) rotated_vecY = rs.VectorRotate(vecY[:], angle, [0, 0, 1]) rotated_vecY[2] = z_shift final_point_Y = rotate_point_around_origin(rs.VectorAdd(base_pt, rotated_vecY), base_pt, rotation_angle) spiral_points_2.append(final_point_Y) point_B = rs.AddPoint(final_point_Y) rs.ObjectLayer(point_B, "Helix_B") rs.ObjectColor(point_B, B_color) for i in range(len(spiral_points_1)): line = rs.AddLine(spiral_points_1[i], spiral_points_2[i]) rs.ObjectLayer(line, "Helix_Connections") rs.ObjectColor(line, C_color) crv_A = rs.AddCurve(spiral_points_1, 1) rs.ObjectLayer(crv_A, "Helix_A") rs.ObjectColor(crv_A, A_color) crv_B = rs.AddCurve(spiral_points_2, 1) rs.ObjectLayer(crv_B, "Helix_B") rs.ObjectColor(crv_B, B_color) # Kamera entlang Pfad def move_camera_along_path(camera_curve, frame, total_frames): param = frame / float(total_frames) cam_pos = rs.EvaluateCurve(camera_curve, rs.CurveParameter(camera_curve, param)) target_objects = rs.ObjectsByLayer("CameraTarget") target = rs.PointCoordinates(target_objects[0]) if target_objects else [0, 0, 0] dm.setCameraTarget(camera=cam_pos, target=target, lens=lense, rota=0, upVec=0, verbose=0) ### Parameter # Helix windungen = 4 anzahl_punkte = 60 # Animation frames = 10 max_rotation = 1440 lense = 35 camera_curve = rs.ObjectsByLayer("cam") for frame in range(frames): angle = (frame / float(frames)) * max_rotation # rotation pro frame if "Helix_A" in rs.LayerNames(): rs.DeleteObjects(rs.ObjectsByLayer("Helix_A")) if "Helix_B" in rs.LayerNames(): rs.DeleteObjects(rs.ObjectsByLayer("Helix_B")) if "Helix_Connections" in rs.LayerNames(): rs.DeleteObjects(rs.ObjectsByLayer("Helix_Connections")) for point in helix_startpoints: generate_doppel_helix(base_pt=point, spiral_size=21.3, z_scale_factor=1, anz_spiral=anzahl_punkte, num_turns=windungen, radius=1, rotation_angle=angle, A_color=A_color, B_color=B_color, C_color=C_color) # set parameter helix move_camera_along_path(camera_curve, frame, frames) # Export frames #dm.captureFrames(path="C:\\Users\\rothl\\dm2\\11\\animation\\", name="00_frame", fram=frame, Width=1600, Height=1200, Scale=1, format="jpg", trans=0) #dm.esc() rs.Redraw() time.sleep(0.05) rs.EnableRedraw(True)