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Abstract: The development of digital technologies in the last twenty years 
has led to an unprecedented formal freedom in design and in the 
representation in virtual space. Combining non-standard geometry with 
CAD tools enables a new way of expression and realization of 
architectural ideas and conceptions. But the transformation of a virtual 
double-curved surface into a buildable physical structure and object is 
always accompanied by huge costs and big problems like geometric and 
statical ones. With this work we propose a method how to transfer a 
double curved surface into a cost-efficient buildable shell structure 
consisting of planar building elements derived from tangent planes and 
based on ornamental discretization. This approach should also serve as a 
geometric basis for an interface whereby a user can transfer his designed 
ornamental 2D-pattern onto a desired freeform. The novel process in our 
work is that we take the surface curvature at local points into account. This 
solves former problems which occurred when intersecting the tangent 
planes. Additionally local control of the spatial ornamental structure is 
provided. 

The load bearing system is organized in a way so that the forces are 
distributed along the edges of the plane elements. A structure with plane 
elements supports a high stiffness in combination with a relatively small 
overall weight. This is due to the smooth curved shape of the geometry.  

1. Introduction 

Unconventional geometric shapes and free-form surfaces - also known as 
non-standard geometry - have always been something that architects wish 
to design and build [Farin 2002, Kolarevic 2003, 2008]. The first step in 
the creation of buildable free forms in architecture is their discretization. 
The discretization of free-form surfaces is defined as the process of 



  

partitioning a continuous surface into discrete counterparts. This process is 
usually carried out as the first step toward determining those parts of a 
surface that make a surface suitable for numerical evaluation and 
calculation.  

Free-form surfaces may be discretized in a number of ways and in 
accordance with a number of principles. One method of surface 
discretization results in planar panels, whereas with another curved 
segments are obtained. In terms of geometry, there are two fundamental 
differences between these two methods of discretization. First, when a 
surface is discretized into planar elements, the initial surface form is 
approximated in order to obtain planar elements, and depending on the size 
of individual elements, a greater or lesser distortion in the geometry of the 
set form occurs. With the second method of discretization, the set form is 
not approximated; instead, the complete form is partitioned into smaller 
curved segments. When a surface is discretized into planar elements, the 
obtained segments of the surface share straight boundary edges, while with 
curved segments the boundary edges are curved. 

Nevertheless, if a surface has to be discretized in view of its actual 
construction, obviously from the aspect of technology discretization into 
planar elements is both more feasible and cost-effective, in comparison 
with discretization into curved elements.  

In our work we would like to give a designer the opportunity to choose 
the form and size of discretization he needs. Our approach is the way of 
using plane ornaments as a 2D starting point which can be manipulated by 
the user and afterwards mapped automatically onto a 3D surface. This 
mapping will be described in this paper. The designing of the user 
interface is another part of our project which is work in progress. Figure 1 
shows an example of an ornamental cell which can be controlled by the 
user by moving and mirroring it in the 2D-plane (two pictures on the left 
side). On the right side a freeform surface and the mapping of the 
ornament onto it can be seen.   

Fig.1 Ornamental cell, 2D ornament generated with the cell (moving and 
mirroring), freeform surface and the mapping of the ornament onto the surface 

 



  

2. Discretization 

2.1 Discretization into curved segments 

In this particular case, it is possible to partition the selected free-form 
surface according to an arbitrary panelization scheme, hereinafter referred 
to as the ornament, which would serve as a pattern for the discretization of 
the complete surface. It may be said there is an infinitely great number of 
ornaments in the wall ornament group [Shubnikov 1974, Quaisser 1994, 
Moussavi 2006], which can be used to discretize the selected surface. The 
upside of this method is that the surface is segmented within the u and v 
parameters and the selected 2D ornament can easily be projected onto a 
curved free-form surface. In that case, depending on the type of surface, 
the selected 2D pattern will undergo some deformation, elongation or 
contraction. 

Attempts to materialize this kind of geometric model using real 
building materials reveal the downsides of this method. In building 
construction, it is possible to construct double curved surfaces using a 
combination of steel and glass (a steel frame in combination with glazed 
panels), or concrete. Currently, the manufacturing of double curved glass 
has reached a point where it is necessary to produce molds first which 
correspond to the required curved form, which leads to extremely high 
costs and makes the construction of such buildings cost-ineffective. When 
concrete is the preferred material, the problems of formwork construction 
and reinforcement placement make building complicated and costly 
[Sauter 2008]. It may be said the economic aspect is not the crucial one 
when it comes to big construction projects, but the question remains as to 
how buildings with double curved surfaces can be constructed in a feasible 
and economical way. This has been a debating point in glass and concrete 
industry, and future research might lead to the creation of new, cost-
effective technologies that will be able to allow the materialization of such 
complex forms.  

One possible way to construct such buildings using currently available 
technologies is by re-geometrizing geometric forms. The term re-
geometrization means the selection of such geometric forms that may be 
discretized into “similar” curved segments. It would be possible to 
construct such forms using a small number of such elements, which would 
considerably reduce the production cost of double curved surfaces, glass or 
concrete. 

Another issue of concern when it comes to this type of discretization is 
the joining technique. In the case of discretized elements with curved 



  

boundary lines, the nodes are under torsional moments, making the 
calculations more difficult to carry out.   

2.2 Discretization into plane segments 

A surface can be partitioned into planes using different techniques, 
triangulation, quad meshing, or freely placed tangential planes. There are 
both advantages and disadvantages to each of these methods of 
discretization, which will be discussed briefly. 

Triangulation is the best-known method of curved surface discretization 
(Fig. 2). This method is used for partitioning a selected surface into 
triangular planar segments. The drawback of this method is a very large 
number of edges characterized by a high degree of geometric complexity, 
which in turn requires many load-carrying members, large quantities of 
structural materials, and increases construction costs. When it comes to the 
aesthetics, only the size and aspect ratio of triangular panels can be 
influenced.     

Fig. 2 Triangulation – Murinsel Graz 
 

The second method is quad meshing, where a surface is divided into 
quadrangular polygons by means of tessellation [Sauer 1970, Glymph et 
al. 2002, Liu et al. 2006, Pottmann et. al. 2008, Zadravec et al. 2010]. 
From the aspect of use of materials, surface tessellation is more optimal 
than tessellation into triangular elements. However, it cannot be easily 
employed with arbitrary surfaces. 

The third type of tessellation of free-form surfaces is planar 
tessellation, where plane polygons are obtained. The construction is based 
on the duality between the surface points and their tangent planes. The 
tessellation works on the intersection of numerous tangent planes of the 
selected surface. If the tangent planes of a smooth surface are positioned in 
a certain way, it is possible to obtain convex hexagonal “honeycomb” 



  

panels. This is achievable if the observed surface is positively curved. If 
the surface is negatively curved, we get butterfly-formed panels. This topic 
is discussed for instance in Wang (2008) and Wang (2009). If tangent 
planes are selected at consecutive points on the maximal and minimal 
curvature lines, it is possible to predict the orientation of the intersecting 
edge between two adjacent surfaces. Following this principle, the paper 
[Troche, 2008] also uses a TPIAFT algorithm (Tangent Plane Intersection 
– Advanced Front Technique) to panelize a positively curved surface and 
optimize the size and shape of the panels, although without applying the 
aesthetic principle.  

The fact that there is an infinite number of possibilities when selecting 
points and their tangent planes on a surface (Fig. 3, Fig. 4) raises the issue 
of the way and conditions which make it possible to select specific tangent 
planes whose intersection would produce the desired shape in accordance 
with the previously selected tessellation, a 3D ornament. Another issue is 
whether there is an infinite range of possibilities to generate a preferred 3D 
ornament and on what conditions surface tessellation would be ornamental 
in character, i.e. it would produce not only the functional, but also the 
aesthetic component of a free-form surface. 

 

Fig. 3 Different choices of tangent planes produce different plane panels 

 

 

 

Fig. 4 Panels can be 
modified by changing the 
uv parameters of the 
associated point on the 
curved surface   

 
This paper presents a new simple and geometric approach to panelizing 

free-form surfaces, with the goal of generating panels according to specific 



  

aesthetic criteria. This analysis is based on previously solving the problem 
of TPI (tangent plane intersection) on an arbitrary curved surface. The 
construction takes also the curvature properties of the given free form 
surface into account and provides local control. Local control is a great 
advantage over constructions where optimization algorithms are used “to 
design our design”. So we can interfere in regions of our planarization 
where a special design is needed and desired.  

The main problem in the process of discretization of free-from surfaces 
is choosing the correct adjacent tangent planes that model the polygonal 
panels and finding the orientations of their edges. 

3. Planarization 

Our approach to the discretization of a smooth double curved surface S is 
based on the duality between surface points and their tangent planes (see 
e.g. Troche (2008), Wang (2008), Wang (2009)). We take a number of 
surface points Pi (i = 1, ..., n), which (at this stage) are arbitrarily 
distributed on S. We make sure the points Pi are either elliptic or 
hyperbolic and avoid parabolic points [Do Carmo 1976, Farin 2002]. To 
every point P on S we determine its tangent plane τP and intersect it with 
the tangent planes of the adjacent points (Fig. 4). We keep that part of τP 
which encloses P. This part is convex if P is an elliptic surface point and 
concave if P is hyperbolic or parabolic. An important question is the 
choice of points adjacent to P. One known approach is to use a Delaunay 
triangulation to Fig. out the nearest and neighboring points. This can be 
done by a triangulation of the parameter value set (ui, vi) of the set Pi in the 
[u,v]-plane or as a spatial 3D Delaunay triangulation of the points Pi. This 
works in some cases but often causes problems (see Troche 2008 and Fig. 
4). This is due to the fact that neither is an adapted surface measurement in 
the form of geodesic lines used, nor is the curvature of the involved 
surface taken into account. This kind of use of triangulation will only yield 
accurate results for those parts of a surface where there is not a great 
curvature variance, i.e. where the principle curvatures do not vary greatly. 
In case there is a great variance in the curvatures, triangulation is 
inaccurate and will produce too many errors and fail to find the closest 
edges of intersecting planes. This method is inapplicable in the case of 
arbitrary surfaces, with too many problematic vertices occurring that 
require manual reconnection (Fig. 5). 



  

 

Fig. 5 Tangent plane intersection with problems at some locations 
 
A possible way to take a double curved surface which can be used for a 

correct triangulation is the sphere. Because of its constant curvature 
behavior a triangulation of arbitrarily distributed points on a sphere can be 
achieved by using either the arc length on the great circles which serve as 
geodesics on the surface or the angles of the centre. Both methods can be 
employed as utilities measuring the distance between two different surface 
points A and B and to perform a spatial triangulation (see Fig. 6). Another 
possibility to get correct triangulations on a double curved surface is the 
use of a paraboloid of revolution.   

   

Fig. 6 Triangulation on a sphere (left). Distances between two points A and B can 
be measured by the associated great circle or the centre angle α. 

 
Affected by the situation on the sphere, we developed the following 

new idea to construct an appropriate triangulation of our point set Pi to get 
a correct intersection algorithm. For our approach we consider the 



  

osculating paraboloid Π of a point P on a surface S [Kruppa 1955, 
Pottmann et al. 2007]. The surface Π reflects the curvature behavior of S at 
P. Depending on the surface point P (elliptic, hyperbolic or parabolic), the 
surface Π  is an elliptic or hyperbolic paraboloid or a parabolic cylinder. In 
general, an arbitrary surface point P has two different principle curvatures 
κ1 and κ2 and the associated orthogonal principle directions t1 and t2 (see 
Fig. 7 left). For our procedure we perform a linear geometric 
transformation T on the surface (and the point set) to gain the following 
situation in P (Fig. 6 right): 

|κ1| =  |κ2| 
 
For this transformation T we use an orthogonal perspective affinity with 

a fixed plane Φ determined by the point P, its surface normal nP and one of 
the principle directions ti. The second direction serves as the direction of 
the affinity rays. The transformation factor f can easily be derived by the 
equation of the osculating paraboloid Π : 

 
Π: z = ½ · κ1 x2 + ½ · κ1 y2

 
 

If we keep the principle curvature κ1 fixed and change κ2 , we get the factor 
  

f = sqrt(κ1/κ2) 
 
In the converse case we get  

f = sqrt(κ2/κ1) 
The transformation T is nothing but an orthogonal non-uniform 3D-

scaling. After that an elliptic point P on S becomes an umbilical point so 
that a certain area around P “looks like a sphere”. Thus, we can perform a 
very precise triangulation in the neighborhood of P similar to a real sphere. 
At the same time, the paraboloid Π is transformed into a paraboloid of 
revolution.  



  

 
Fig. 7 A surface point P with an adapted coordinate system consisting of the 

principle directions t1, t2 and the surface normal nP (left). The situation after the 
transformation T with the fixed plane Φ and the transformed circle of curvature 

T(c2) (right). P becomes an umbilical point.  
 
After the transformation T the area around the hyperbolic points “looks 

like an orthogonal hyperbolic paraboloid” and this can also be used for our 
procedure, which will be shown later.  

The point set Pi is also transformed into a set T(Pi) = Qi on T(S), which 
can now be used for the triangulation. The triangulation can be performed 
in space or by an ordinary 2D-Delaunay triangulation after a projection of 
the set Qi into the tangent plane τP (Fig. 8). Thus, we get a perfect 
correlation between the points and know which tangent planes have to be 
intersected.  

The transformation T has to be accomplished for every point P of our 
set so we get a set Ti , (i = 1,…,n) of transformations. In order to simplify 
and shorten the whole procedure and to make it feasible we perform a 
triangulation of the whole set Pi in the [uv]-parameter plane before we 
achieve the transformations Ti. From this first (incorrect) result we take 
only a certain set of points in the neighborhood of each point Pi to perform 
the transformation Ti.  

It must be said that this construction only works in a certain 
neighborhood of the point P and because of the discrete amount of points.  



  

  
Fig. 8 The correct correlation between the projected and transformed points Qi   

 
There is one fact which we have to mention concerning the hyperbolic 

case. If we draw a geodesic circle g round the center P of an orthogonal 
paraboloid (Fig. 8 left) and project it into the tangent plane τP, we get a 
plane curve g’. If the “radius” r of c is not that big, the projection g’ does 
not differ much from a circle c in τP with the same radius r and center P 
(Fig. 9 right). This is the reason why a triangulation of the projected points 
Qi in τP yields very useful results for our tangent plane intersection 
algorithm. Again, this construction works only in a certain neighborhood 
of the point P; but that is exactly where our interest lies. 

  

Fig. 9  A geodesic circle g with radius r round the vertex P of an orthogonal 
hyperbolic paraboloid (left). Its orthogonal projection g’ into the tangent plane τP 

of P does not differ much from a circle c with the same radius and the same center 
P (right). 

 



  

4. Constructing spatial ornaments 

In order to construct a spatial ornament consisting of plane elements over a 
complete arbitrary double curved surface S we start with the 2D situation. 
We take a desired pattern which is constructed as a flat Voronoi diagram 
to a set of points SP and put it over the [uv]-parameter plane associated 
with S (Fig. 10 left). Then we map SP according to the parameter values 
onto S and determine the spatial triangulation (Fig. 10 right). This yields a 
first result for the correlation between the points of SP. 

Fig. 10  A plane ornamental pattern designed as a Voronoi diagram to a certain set 
of points SP over the [uv]-parameter plane (left). Mapping of the point set SP onto 

a double curved surface S and its spatial triangulation (right). 

Now we determine the tangent planes of the set SP related to S and 
perform the construction algorithm explained in chapter 3 for all of the 
points. The geometric transformation T needs to be accomplished for very 
point and its neighbors. The result can be seen in Fig. 11.  

Fig. 11 The desired spatial version of the ornament shown in Fig. 10 for the 
complex surface S. Some of the polygons are colored to enable a comparison with 

Fig. 10 



  

Additionally Fig. 11 right shows some of the desired polygons of the 
planar ornament of Fig. 10 in different colors.  

The algorithm works quite fine in the positively curved regions of the 
surface S.  In the “middle of S” there is a part with parabolic and 
hyperbolic points. There the spatial ornament differs (of course) from the 
flat version according to the explanations in chapter 3. Nevertheless our 
algorithm yields useable panels in a concave shape. 

If we use curvature lines instead of the conventional uv - parameter 
lines we get a different mapping of our point set SP onto the surface S and 
therefore a different result. Fig. 12 left shows S with a set of its curvature 
lines and Fig.12 right demonstrates the result of our planarization 
algorithm. One can see clearly the problems in the “middle of S” where we 
had to put in triangles to close the form. It turned out that for the shape of 
S curvature lines are not an appropriate choice. But changing the 
parameterization and the parameter lines of a surface would be a good 
possibility to vary the design. This is a topic which has to be investigated 
in future. 

Fig. 12 The surface S and a set of its curvature lines (left). The associated 
planarization with a problematic region in “the middle” of the surface (right) 
 
In the former chapters we described geometrical principles how to handle 
with all kind of surfaces in order to analyze the geometrical properties. 
Especially in figures 10 – 12 a strong curvature behavior can be seen. In 
the majority of cases architectural design shapes do not have such extreme 
curvature characteristics. Figure 13 shows an architectural example with a 
smooth curvature and the implementation of our planar discretization.  



  

Fig 13 A smooth double curved surface segmented in plane façade elements 

5. Future work 

 In the future the great number of ornaments will be analyzed from the 
aspect of potential transposition to double curved surfaces. Acceptable 
types of ornaments will be investigated in relation to the type of curvature 
– positively or negatively curved surfaces. One goal shall be the study of 
different surface parameterizations and their associated parameter lines. 
Besides the conventional parameter and curvature lines also conjugate 
surface lines will we studied. 

Other contributions will focus on how a free-form surface can be 
modified according to a pre-selected ornament so that the type, shape and 
size of the ornament are preserved. This approach requires the 
optimization of the surface in relation to a specific criterion of the selected 
ornament. The issue here is to what extent and according to what rules it is 
necessary to modify the form of the existing surface so the originally 
selected ornament lies on it perfectly. Another problem to be investigated 
is how to limit the infinite range of possibilities to generate a preferred 
spatial ornament and what conditions can render surface tessellation 
ornamental in character. 

One other major goal will be the implementation of a user interface for 
the design of a desired ornament including size and shape optimization and 
first static estimation for standard building materials. This is already an 
ongoing work. Finally our work should be a device for any designer who 



  

wants to approximate and design a double curved surface by means of 
plane elements according to his aesthetic needs. 

The main aim of our whole research project is the implementation of 
the presented geometric methods through building a self supporting free-
form object made out of CLT panels. Figure 14 shows a scale model study 
there from. Along with the presented geometry topics, associated static 
conditions and calculations are currently explored in order to make 
geometric results buildable. This will be discussed in further papers.  

 

 
Fig.14 Scale model of an ornamental shell structure 
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