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Abstract. The adoption of digital planning methods has given rise to 
an unprecedented formal freedom in architectural design. Free-form 
shapes enjoy considerable popularity in architectural production today. 
However, these shapes prove to be notoriously hard to fabricate. This 
paper reports on an ongoing research project investigating the approxi-
mation of continuous double-curved surfaces by discrete meshes con-
sisting solely of planar facets, which can be constructed efficiently by 
using standardised, mass-produced building materials. We introduce 
our geometrical approach, which is based on the intersection of tangent 
planes to the surface, and present the digital tools we conceived to inte-
grate the processes of design rationalisation and form-finding.
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1. Introduction

With Leon Battista Alberti’s claim that architecture ought to be separate from 
construction, a profound change of the profession commenced. Being more 
and more emancipated from the act of building, architects became to be fore-
most the authors of planning documents, while the problem of realising their 
designs became the task of engineers and construction specialists. This division 
of design and production holds up until this day and, moreover, was reinforced 
by the emergence of digital planning methods during the past decades.
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It’s just natural that many architects, as authors of design documents, 
decided to adopt software programs excelling at the production of representa-
tional imagery - software which was originally conceived for computer anima-
tion or the automotive and aviation industries. These programs enabled archi-
tects to create and manipulate even the most complex of shapes and allowed 
for an unprecedented formal freedom in architectural design.

The most prominent novelty the digital modelling programs brought with 
them was the introduction of free-form surfaces to the formal language of 
architectural design. These surfaces were hard to describe using ruler and 
compass, but could easily be mastered with the aid of a 3d modelling program. 
However, the software packages did not come with the functionality it takes 
to rationalise designs so that the new formal vocabulary could be materialised 
with reasonable efforts.

Design rationalisation can be defined as “the process of approximating an 
intended form with a well-defined generative principle in order to facilitate 
building execution” (Fischer 2007, p. 45). Today this task is often performed 
by digital production specialists after a design has already been conceived. 
The fruitful process of trying to bring form, structure and the means of their 
production into the best possible accordance cannot happen in this division of 
labour. 

In this paper we introduce a method to transform continuous double-curved 
surfaces into discrete meshes consisting solely of planar facets and present the 
digital tools we conceived to integrate the processes of design rationalisation 
and form-finding. 

2. Discretisation of free-form surfaces

Continuous double-curved shapes have proven to be notoriously hard to fab-
ricate in an architectural scale. Manufacturing free-form building elements 
usually requires the production of custom moulds for every single building 
element, which naturally results in high construction costs. For this reason 
various techniques to adapt the shape of free-form surfaces have been 
explored to make their construction more efficient (Shelden 2002, Pottmann 
et al. 2008a, Eigensatz et al. 2010). The approximation of continuous double-
curved surfaces by discrete planar meshes has thereby been a topic of great 
interest, since the fabrication of shapes consisting solely of flat panels is far 
less costly than the production of curved building elements.

The most straightforward way to transform a continuous surface into flat 
panels is to approximate the surface with a triangle mesh. This method has 
been used in a number of outstanding built projects like the Great Court of the 
British Museum (Norman Foster and Partners with Büro Happold, Figure 1a) 
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or the Fiero Milano (Studio Fuksas with Schlaich, Bergermann and Partners, 
Figure 1b). 

Any arbitrary surface can be triangulated, but when it comes to produc-
tion the resulting shape is economically less advantageous than equivalent 
surface structures consisting of panels with more than three sides (Glymph et 
al. 2004, Pottmann et al. 2008b). Working on the realisation of Frank Gehry’s 
design for the Museum of Tolerance in Jerusalem, Glymph et al. developed a 
method to tessellate surfaces into planar quadrilateral facets. Their approach is 
based on the special geometrical properties of translational surfaces (surfaces 
that are created by sweeping one curve along another curve) and rotational 
surfaces (created by revolving a curve around an axis) and thus its application 
is restricted to these classes of shapes. While the Museum of Tolerance was 
never realised, the roof of Berlin Zoo’s Hippopotamus House (Jörg Gribl with 
Schlaich Bergermann and Partners, Figure 1c) is a built example of a quadri-
lateral mesh based on a translational surface.

Liu et al. (2006) later introduced a method to discretise a general dou-
ble-curved surface by optimising a quad mesh that approximates a double-
curved shape so that its faces become planar. Similarly, Wang and Liu (2010) 
developed an approach based on mesh optimisation to produce hexagonal 
panelisations. 

Figure 1. (a) Great Court of the British Museum, (b) Fiero Milano,  
(c) Berlin Zoo Hippopotamus House.

Our approach to the discretisation of free-form surfaces is based on the inter-
section of tangent planes (Cutler and Whiting 2007, Troche 2008, Bagger 2010, 
Stavric and Wiltsche 2011). We take a number of two-dimensional points that 
can be arbitrarily distributed and map them onto the [uv]-parameter space of 
a given non-periodic, double-curved surface. We will call the resulting points 
on the surface “pattern points” since they determine the pattern scheme of 
the emerging planar facets. To every pattern point we determine its tangent 
plane T to the given surface and intersect it with the tangent planes of adjacent 
points. As illustrated in Figure 2 the intersection of T with the tangent planes 
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of two adjacent pattern points yields a vertex of the polygon that defines the 
boundary of the facet laying in tangent plane T. Because all vertices found by 
intersecting with T necessarily lay in this plane, the resulting polygon bound-
ary is guaranteed to be planar.

P....Pattern points (base points of tangent planes)• 
T....Tangent planes• 
V....Vertex of a panel boundary polygon• 

Figure 2. Tangent plane intersection.

Besides generating absolutely planar facets, a mesh produced by the presented 
method will naturally tend to a configuration where only three panels meet at 
each vertex. In comparison, an average of six panels meet at the vertices of tri-
angulated meshes, which leads to far more complicated construction details.

Unlike other discretisation techniques, such as triangulation or quad 
meshing, shapes created with the presented approach can be composed of pol-
ygons with varying numbers of sides. Tangent plane intersections produce a 
complex ornamental pattern, potentially introducing a new expressive quality 
to a design project. One of the favourable characteristics of this approach is 
the level of detailed control it offers to designers. The pattern scheme can 
easily be altered by simply manipulating the pattern points that determine 
the tangent planes along the surface. The presented method not only allows 
to control the discretisation process as a whole, but also enables designers to 
perform selective optimisations to the discrete shape. Pattern points can be 
moved, added or deleted locally, without changing the overall geometry. This 
allows the precise control of the emerging discrete shape - of both aesthetic 
and performative aspects.

While the calculation of tangent planes to a free-form surface and their 
intersections is trivial, the challenge is to judge whether two pattern points are 
adjacent and the intersection of their tangent planes yields a valid edge of a 
facet boundary polygon. Therefore the interplay of pattern point positions and 
local surface curvatures must be accounted for. 

We have developed an efficient algorithm that solves this problem for sur-
faces with positive Gaussian curvature and are currently in the process of 
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adapting the method so that it will also be possible to discretise surfaces with 
negative Gaussian curvature using the same strategy.

We begin by performing a Delaunay triangulation of the original two-di-
mensional pattern points. This initial triangulation gives a first result for the 
correlation between the given points and is used to determine a set of adjacent 
candidates for every point. To determine which candidates are truly adjacent 
to a pattern point, the candidate points have to be projected onto the tangent 
plane of the pattern point that is investigated. We found that if the minimum 
and maximum curvatures of the surface at the investigated point are equal 
(which, for example, is the case at the centre of a paraboloid of revolution), 
the Delaunay triangulation of the projected candidates in the tangent plane 
reveals the valid set of adjacent points.

  

 (a) Original pattern points and surface (b) Scale transformation

  

 (c) Projection onto the osculating (d) Normal projection onto the tangent
 paraboloid in P0 plane of P0 and Delaunay triangulation

Figure 3. Finding the correct set of adjacent points for the tangent plane intersection.

But since surface parts with equal minimum and maximum curvatures are a 
rare case with free-form shapes, another step is necessary. To compensate for 
the local surface curvatures, we consider the osculating paraboloid (Pottmann 
et al. 2007) to the surface S at the investigated point P0. We calculate the ratio 
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of minimum and maximum surface curvature at P0 (illustrated as the princi-
pal curvature circles CMIN and CMAX in Figure 3b) and scale the candidates 
according to the square root of this ratio non-uniformly in the direction of the 
maximum curvature vector VCMAX (Figure 3b). We take the resulting points PS 
and project them onto the osculating paraboloid B at P0 with P0 as the projec-
tion centre (Figure 3c). These transformations compensate the local surface 
curvature variations around P0. The resulting points PB are projected normal 
onto the tangent plane T in P0 (Figure 3d). The Delaunay triangulation of the 
projected points in T (Figure 3d) finally yields the correct correlation between 
the pattern points: every candidate that is directly connected to P0 in the trian-
gulation is an adjacent point and its tangent plane must be intersected with the 
tangent plane of P0 to get the valid facet laying in the latter plane.

Since thoroughly discussing the geometrical backgrounds of this approach 
is out of the scope of this paper, I would like to refer the reader to Stavric and 
Wiltsche (2011), where the geometry of the presented method is discussed 
in much greater detail. The described process of compensating local surface 
curvatures has to be repeated for every pattern point. Although this might 
sound like a time-consuming task, the computations are straightforward. To 
give a few numbers, the discretisation of a surface consisting of 1000 facets 
currently takes about 70 milliseconds on a PC equipped with a 3.4 Ghz i-7 
quadcore processor. This gave us the opportunity to develop design tools that 
provide immediate feedback to the actions of a designer, which we deem as an 
essential feature of our work.

3. The Tools

In the course of our research we have developed a set of digital tools to inte-
grate the presented approach of free-form surface rationalisation into the 
design process form early design stages on. 

The implementation of our tool kit can be divided into two components: 
the core algorithm (the encoded geometrical and mathematical knowledge to 
perform the discretisation of a given surface) and the interface provided to 
control and refine the panelisation process (the actual tools to be used by the 
designer). We decided to prototypically implement our tools for McNeel’s 
Rhinoceros Software since “Rhino” is excellent with modelling free-form 
surfaces and enjoys considerable popularity in the architectural community 
today. Furthermore, due to the common ground of software development for 
Rhino and its parametric modelling extension, Grasshopper, we were able 
to efficiently develop explicit modelling tools for the direct manipulation of 
geometries, as well as a pure parametric modelling interface to our algorithms 
- both enabling an inherently different workflow.
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4. Direct modelling interface

The central element of our direct modelling interface is the “discrete surface” - 
a new constraint-based geometrical object type we introduce to the modelling 
environment, complementing Rhino’s native NURBS surface and polygon 
mesh objects. The discrete surface is not just a descriptive geometrical object 
but an active representation that reacts to modifications performed by the 
designer, automatically forming the panelised approximation of a continuous 
surface using a given pattern scheme. To create a discrete surface the designer 
has to define an initial pattern scheme as a set of planar points as well as a 
double-curved surface to discretise. The pattern scheme points in Figure 4a 
were created using a small tool we made for the quick generation of panelisa-
tion patterns. As depicted, the tool also displays the Voronoi diagram for the 
generated set of points. Although the emerging panel scheme of the discrete 
surface deviates from this diagram, it generally gives a good idea what to 
expect on a surface with positive Gaussian curvature.

   

 (a) Initial pattern scheme (b) Continuous surface (c) Generated discrete surface

Figure 4. Creating a discrete surface.

Once created, the discrete surface can be refined by simply moving the pattern 
points along the surface (Figure 5) and by adding new points or removing exist-
ing ones. Manipulating pattern points works just like transforming any other 
points in Rhino, with the exception that they are constrained to move along 
the surface. While editing the discrete surface, designers can take advantage 
of the full range of geometrical modelling aids Rhino offers (simultaneous 
transformation of multiple objects, object snaps, construction grid, etc.).

Figure 5. Editing the panelisation scheme by moving pattern points along the surface.
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As illustrated in Figure 6, the shape of the original continuous surface can still 
be transformed by editing the control points of the surface subobject.

Figure 6. Changing the shape of the continuous surface  
subobject by editing its control points.

Due to the short computation times of the discretisation algorithm, changes to 
the surface shape and pattern scheme are reflected in real time, which gives 
designers immediate feedback on their actions - even when working on a 
shape consisting of thousands of panels. By providing an active geometrical 
representation of a discrete surface which allows the interactive refinement 
of designs, we aim to facilitate an explorative design approach and the con-
tinual “talk-back” (Schön 1983) with the design problem. However, relying 
solely on geometrical constraints is not sufficient in many cases. Therefore 
we extend our tool kit to Rhino’s parametric design environment, Grasshop-
per. Offering a parametric interface to our algorithm, we enable designers to 
include their own project specific constraints and to potentially enhance their 
design approach.

5. Parametric interface

Although the direct manipulation of geometries using explicit modelling tools 
is generally perceived to be the most intuitive way of designing with digital 
tools, algorithmic form-finding techniques are employed by a growing number 
of digitally advanced practitioners. These techniques require that a design is 
described by a parametric model instead of a concrete geometric representa-
tion. The parametric model thereby describes the process how to arrive at a 
certain form rather than the form itself.

Additionally to the direct modelling interface we created a Grasshopper 
component that provides a parametric interface to our algorithm. The com-
ponent can take either geometrically defined or parametrically generated sur-
faces and pattern point sets as inputs, it outputs the generated discrete mesh 
geometry which can then be further processed inside Grasshopper. 
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Figure 7 shows a fully parametric 3d model of a prototype design to be 
constructed later this year. The structure will be fabricated from cross-lam-
inated timber (CLT) panels and features a custom joint system which was 
developed for this self-supporting prototype structure (Schimek et al. 2010). 
The panel geometry, the joints and slots were generated parametrically, based 
on the output of our Grasshopper component.

Figure 7. Parametric model of a prototype structure.

6. Outlook

Our future work will focus on three topics. As already mentioned we are cur-
rently in the process of adapting our geometrical approach so that it will also 
be possible to discretise surfaces with negative Gaussian curvature using the 
same strategy. Our second line of research focuses on the construction of the 
self-supporting prototype structure mentioned before. We are currently extend-
ing our set of tools to incorporate design constraints tailored for this construc-
tion strategy. And finally, we are working on the automated generation of data 
to drive the digital production of panels using computer numerically control-
led mills. This will complement our tool kit to form a complete digital chain 
for the construction of discrete surfaces, reaching from early design stages on 
through to the fabrication process.
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